Ion homeostasis in a salt-secreting halophytic grass

نویسندگان

  • Payal Sanadhya
  • Parinita Agarwal
  • Pradeep K. Agarwal
چکیده

Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na(+)) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K(+) starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na(+)/H(+) antiporter, SOS1, and tonoplast Na(+)/H(+) antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses

Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...

متن کامل

Physiological and Antioxidative Responses of a Halophytic Grass Leptochloa fusca L. Kunth (Kallar grass) to Salinity

The effects of salt stress on growth and some physiological parameters of halophytic plant, Leptochloa fusca L. Kunth, were investigated. The seedlings were irrigated with half-strength Hoagland solution and then treated with different concentrations of NaCl (0, 100, 300, 500 and 700 mM) for 15 days. The fresh and dry weights of both root and shoot were unchanged at 100 mM NaCl and decreased at...

متن کامل

SOS1, HKT1;5, and NHX1 Synergistically Modulate Na+ Homeostasis in the Halophytic Grass Puccinellia tenuiflora

Puccinellia tenuiflora is a typical salt-excluding halophytic grass with excellent salt tolerance. Plasma membrane Na+/H+ transporter SOS1, HKT-type protein and tonoplast Na+/H+ antiporter NHX1 are key Na+ transporters involved in plant salt tolerance. Based on our previous research, we had proposed a function model for these transporters in Na+ homeostasis according to the expression of PtSOS1...

متن کامل

Influence of halophytic hosts on their parasites—the case of Plicosepalus acaciae

Halophytes develop various morphological and physiological traits that enable them to grow successfully on saline substrates. Parasitic plants on halophytic hosts may also encounter salt stress. We investigated the mistletoe Plicosepalus acaciae (syn: Loranthus acacia; Loranthaceae), which occurs on 5 halophytic and at least 10 non-halophytic hosts in the Southern Arava Valley (Israel). Plicose...

متن کامل

Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress

Understanding the mechanisms used by halophytic members of the Poaceae to cope with salt stress will contribute to the knowledge necessary to genetically engineer salt-tolerant crops. In this study, we identified a genotype of Sporobolus virginicus, a halophytic turf grass collected in Japan, and investigated its growth rate, ion concentration and secretion, and proline concentration in compari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015